# 微孔 Si0₂膜在水蒸气条件下的稳定性能

漆 虹, 韩 静, 江晓骆, 陶 振, 邢卫红, 范益群

(材料化学工程国家重点实验室,南京工业大学膜科学技术研究所,江苏南京 210009)

摘 要:以正硅酸乙酯为前驱体,通过聚合溶胶路线制备出稳定的 SiO<sub>2</sub>溶胶和制膜液,采用浸浆法,经过一次涂膜, 在平均孔径约为 3 nm 的γ-Al<sub>2</sub>O<sub>3</sub>中孔膜上制备出完整无缺陷的 SiO<sub>2</sub> 微孔膜,考察了烧成温度对 SiO<sub>2</sub> 粉末和 SiO<sub>2</sub> 微孔 膜气体渗透性能的影响.结果表明,在400~800℃焙烧温度下制备的 SiO<sub>2</sub> 膜在 200℃及 0.3 MPa 条件下对 He 的渗透 通量为(7.29~12.7)×10<sup>-8</sup> mol/(m<sup>2</sup>·s·Pa),600℃下烧成的膜的理想分离因子分别为 98(He/CO<sub>2</sub>),49(He/O<sub>2</sub>),64(He/N<sub>2</sub>), 79(He/CH<sub>4</sub>)和 91(He/SF<sub>6</sub>),具有分子筛分效应.微孔 SiO<sub>2</sub> 膜在水蒸气条件下的稳定性能取决于膜的烧成温度,400,600 和 800℃烧成的膜的水蒸气稳定压力分别为 8,200 和 200 kPa.

关键词:微孔陶瓷膜; SiO<sub>2</sub>膜; 水热稳定性; 气体分离

中图分类号: TQ028 文献标识码: A 文章编号: 1009-606X(2010)01-0161-06

1 前 言

水煤气变换反应是制氢的主要方法,也是温室气体 CO<sub>2</sub>排放的重要来源<sup>[1]</sup>.如何高效分离 H<sub>2</sub>与 CO<sub>2</sub>、获得 H<sub>2</sub>的同时对 CO<sub>2</sub>进行有效的捕集是当前化工领域的研 究热点之一. 对于上述反应过程中 H2 与 CO2 的分离和 CO<sub>2</sub>的捕集,目前普遍采用的方法如物理吸附、化学吸 附和变压吸附(Pressure Swing Adsorption, PSA)等都具 有其独特的优势<sup>[1]</sup>,但也存在一些不足,如过程复杂、 能耗高、消耗吸附剂、产生废物. 若能采用膜反应器及 时移去反应过程中生成的H<sub>2</sub>,实现H<sub>2</sub>与CO<sub>2</sub>的原位分 离,不但可提高反应的转化率、降低反应温度,且能减 少吸附剂的使用和再生,降低能耗和废物排放,是非常 有前景的反应分离耦合技术,对H2与CO2具有分离性 能的膜材料的选择和制备是该技术成功应用的关键之 一. 由于水煤气变换反应的温度在 200~400℃,因此, 能用于该过程 $H_2$ 与CO<sub>2</sub>分离的膜材料主要是无机材料, 包括金属 Pd 膜、分子筛膜和微孔陶瓷膜<sup>[2]</sup>,目前研究 最多的微孔陶瓷膜材料是 SiO<sub>2</sub>. 由于微孔 SiO<sub>2</sub> 膜在水 蒸气条件下不稳定,因此,多数研究都集中在对 SiO2 膜的改性上<sup>[3-7]</sup>,以期提高其水热稳定性能.即便如此, 微孔 SiO2 材料由于具有独特的—Si—O—Si—网络结 构,仍然是气体分离膜的首选材料<sup>[8,9]</sup>.但由于 SiO<sub>2</sub> 膜的 制备方法不尽相同,一些文献<sup>[10-15]</sup>关于水蒸气条件对 SiO2膜结构和性能影响的报道不一致,且未对不同压力 的水蒸气对微孔 SiO2 膜性能的影响进行系统研究. 针

对 这 一 现 状 , 本 工 作 采 用 正 硅 酸 乙 酯 (Tetraethylorthosilicate, TEOS)为前驱体,在酸催化条件 下,通过溶胶–凝胶法(聚合溶胶路线)合成出 SiO<sub>2</sub>溶胶, 采用浸浆法(Dip coating)在具有α-Al<sub>2</sub>O<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub> 双层结 构的片状载体上制备微孔 SiO<sub>2</sub> 膜.重点考察不同烧成 温度下所制微孔 SiO<sub>2</sub> 膜对不同气体(He, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>和SF<sub>6</sub>)的渗透性能及在不同水蒸气压力下SiO<sub>2</sub>膜的 稳定性,以期确定具有分子筛分性能的微孔 SiO<sub>2</sub> 膜在水 蒸气环境中的稳定条件,为微孔 SiO<sub>2</sub> 膜在水蒸气存在的 膜反应器中的应用奠定基础.

# 2 实验

#### 2.1 原料、试剂与仪器

原料与试剂: α-Al<sub>2</sub>O<sub>3</sub>粉体(日本住友公司),仲丁醇 铝(纯度≥97%,德国 Merck 公司),TEOS(纯度≥99%, 德国 Merck 公司),无水乙醇(分析纯,无锡市亚盛化工 有限公司),HNO<sub>3</sub>(分析纯,上海中试化工总公司).He, CO<sub>2</sub>,O<sub>2</sub>,CH<sub>4</sub>纯度均为99.999%,SF<sub>6</sub>纯度99.9%,以上 气体均由南京上元工业气体厂提供,N<sub>2</sub>(纯度 99.999%) 由南京三乐集团有限公司提供.

仪器: 试样抛磨机(德国 Buehler 公司), GT-60 压汞 仪(Poremaster, 美国 Quantachrome Instruments), Belsorp II-mini 比表面测定仪(BEL, Japan Inc.), 高温电炉(英国 Carbolite 公司), LEO1550 场发射电子显微镜(FESEM, 德国 LEO Electron Microscopy Ltd.).

收稿日期: 2009-10-30, 修回日期: 2010-01-04

基金项目:国家重点基础研究发展计划(863)基金资助项目(编号:2009CB623400);国家自然科学基金青年基金资助项目(编号:20906047);化学工程联合国家重点实验室开放基金资助项目(编号:SKL-ChE-09A01);南京市留学回国人员基金资助项目

作者简介:漆虹(1974-),男,甘肃省渭源县人,博士,副研究员,主要从事多孔陶瓷支撑体和微孔陶瓷膜的制备及应用研究,Tel:025-83172279,E-mail: hqinjut@yahoo.com.cn.

#### 2.2 微孔 Si02 膜气体渗透及水热稳定性能测定装置

图 1 是微孔 SiO<sub>2</sub> 膜气体渗透及水热稳定性能测定 装置示意图. 装置由气体钢瓶、减压阀、截止阀、压力 控制器、质量流量计、三通阀、水蒸汽发生器、电炉、 片状不锈钢膜组件和皂沫流量计等组成. 测定微孔 SiO<sub>2</sub> 膜的气体渗透性能时,首先将装有膜片的不锈钢组件放 入电炉中,将电炉升温至 200℃并稳定 10 h,然后打开 气体钢瓶,通过压力控制器调节跨膜压差为 0.3 MPa, 待气体渗透通量稳定后测定膜片对气体的渗透性能. 通 过调节图 1 中的三通阀(7),可在不同水蒸气压力下处理 膜片,处理后用 N<sub>2</sub>对膜片干燥 2 h. 重复上述步骤,即 可测定经水蒸气处理后膜对气体的渗透性能.



 1. Gas cylinder
 2. Pressure reducing valve
 3. Stop valve
 4. Pressure gauge

 5. Pressure controller
 6. Mass flow controller
 7. Three-way valve

 8. Vaporizer
 9. Heating pipe
 10. Furnace
 11. Disk membrane module

 12. Gas washing bottle
 13. Soap-film flow meter

图 1 微孔 SiO2 膜气体渗透及水热稳定性能测定装置示意图

Fig.1 Schematic diagram of the apparatus for determination of permeability and hydrothermal stability of microporous  $SiO_2$  membrane

#### 2.3 实验方法

2.3.1 具有α-Al<sub>2</sub>O<sub>3</sub>/γ-Al<sub>2</sub>O<sub>3</sub>结构的片状载体的制备

参照文献[2]的制备方法,采用平均粒径为 0.3~0.4 μm 的氧化铝制备稳定的悬浮液,通过真空抽吸法得到 厚度约为 3 mm 的片状载体湿坯,湿坯经干燥和高温烧 成,再经试样抛磨机抛光后得到直径 42 mm、厚 2.5 mm 的片状α-Al<sub>2</sub>O<sub>3</sub>载体,载体孔径约为 70 nm(采用压汞法 测得).以仲丁醇铝为前驱体,在酸催化条件下,通过颗 粒溶胶路线制备出平均粒径为 10~20 nm 的稳定的 Boehmite 溶胶,然后采用浸浆法,通过一次涂膜,在 α-Al<sub>2</sub>O<sub>3</sub>载体表面制备出γ-Al<sub>2</sub>O<sub>3</sub>膜,在一定温度和湿度 条件下干燥后,在 600℃下烧成.所制γ-Al<sub>2</sub>O<sub>3</sub>膜的孔径 约为 3 nm(对 PEG 的截留分子量为 3700)<sup>[16]</sup>.

2.3.2 SiO<sub>2</sub>聚合溶胶和片状微孔 SiO<sub>2</sub>膜的制备

采用溶胶-凝胶法(聚合溶胶路线)制备 SiO2 溶胶<sup>[10]</sup>.

将正硅酸乙酯和无水乙醇按一定比例混合后置于冰水 浴中. 在搅拌条件下,向 TEOS 的乙醇溶液中滴加少量 硝酸和去离子水,将体系置于 60℃的恒温水浴中,在 搅拌条件下进行 TEOS 的水解和聚合反应,反应 3 h 后 获得外观透明的 SiO<sub>2</sub> 溶胶. 将 SiO<sub>2</sub> 溶胶稀释,部分溶 胶在常温下干燥后获得 SiO<sub>2</sub> 粉末,剩余溶胶配制成制膜 液,采用自动涂膜机,通过浸浆法在γ-Al<sub>2</sub>O<sub>3</sub>膜表面涂膜 一次. 在一定条件下干燥后的 SiO<sub>2</sub> 粉末和片状 SiO<sub>2</sub> 膜 分别在 400, 600 和 800℃下烧成,分别记为 Si-400, Si-600 和 Si-800.

2.3.3 SiO2 粉末和片状 SiO2 微孔膜的性能表征

采用  $N_2$  吸附--脱附法表征  $SiO_2$  粉体的比表面和孔 结构. 采用如图 1 所示的片状陶瓷膜气体渗透装置,按 分子动力学直径由小到大的顺序 [He(0.255 nm)→  $CO_2(0.33 nm) \rightarrow O_2(0.346 nm) \rightarrow N_2(0.365 nm) \rightarrow CH_4$ (0.382 nm)  $\rightarrow SF_6(0.55 nm)$ ] 测定不同烧成温度下所制微 孔  $SiO_2$  膜的渗透性能. 膜的理想分离因子为膜对不同 气体渗透通量的比值:

$$F_{a} = F_{x} / F_{y}, \tag{1}$$

式中, $F_a$ 为膜的理想分离因子, $F_x$ , $F_y$ 分别为 2 种单组 分气体的渗透通量[mol/(m<sup>2</sup>·s·Pa)].

SiO<sub>2</sub> 膜在水蒸气条件下的稳定性以经水蒸气处理 后膜的气体渗透性能和理想分离因子的变化来判断,按 如下步骤测定:因经水蒸气处理的 SiO<sub>2</sub>凝胶的结构变化 主要集中在前 6 h<sup>[17]</sup>,先将微孔 SiO<sub>2</sub>膜(膜组件温度保持 在 200℃)经 N<sub>2</sub>(0.3 MPa)和一定压力水蒸气的混合气体 处理 8 h,再通入干燥的 N<sub>2</sub>(0.3 MPa),对膜片进行干燥 处理 2 h,然后按 He→CO<sub>2</sub>→O<sub>2</sub>→N<sub>2</sub>→CH<sub>4</sub>→SF<sub>6</sub>的顺序 测定 SiO<sub>2</sub>膜的气体渗透性能.逐步提高水蒸气压力,重 复上述操作过程,测定经不同压力水蒸气处理后 SiO<sub>2</sub> 膜的气体渗透性能.水蒸气按压力从低到高(8→ 15→30→40→60→100→200→500 kPa)的顺序引入 SiO<sub>2</sub> 膜.经不同压力水蒸气处理前后 SiO<sub>2</sub> 膜的表面和断面 形貌采用场发射扫描电子显微镜观察.

# 3 结果与讨论

### 3.1 Si02粉末的性能

图 2 是经室温(25℃)干燥、400 和 600℃热处理后 SiO<sub>2</sub>粉末的 N<sub>2</sub>吸附–脱附等温线.可见 3 种 SiO<sub>2</sub>粉末都 具有 I 型吸附等温线的特征,说明粉末具有典型的微孔 结构.表 1 是不同温度热处理后 SiO<sub>2</sub>粉末的孔结构,随 热处理温度升高,粉体平均孔径逐渐增大,比表面积减 小.SiO<sub>2</sub>-800 粉体的比表面积大大降低(<2 m<sup>2</sup>/g),说明 处理后粉体趋于致密,对 N<sub>2</sub>的吸附量极低.





#### 3.2 微孔 Si0₂膜的干气体渗透性能

表 2 是不同烧成温度下所制 SiO<sub>2</sub> 膜在压差 0.3MPa、温度 200℃时对干燥气体的渗透性能. 从表可

| 表1 不同温度热处理所得 Si0₂粉末的孔结构 |  |
|-------------------------|--|
|-------------------------|--|

 Table 1
 Properties of SiO<sub>2</sub> powder thermally treated at various temperatures

| Temperature | BET specific                     | Average pore  | Total pore                  |
|-------------|----------------------------------|---------------|-----------------------------|
| (°C)        | surface area (m <sup>2</sup> /g) | diameter (nm) | volume (cm <sup>3</sup> /g) |
| 25          | 607                              | 1.77          | 0.2691                      |
| 400         | 453                              | 1.79          | 0.2023                      |
| 600         | 260                              | 1.85          | 0.1205                      |
| 800         | <2                               | -             | _                           |

以看出,随烧成温度升高,SiO<sub>2</sub>膜对 He 气的渗透性能 先略有增大,然后显著降低,而对其他气体的渗透性能 表现出先减小后增大的变化趋势.

根据表 2 数据,由式(1)计算得到 Si-600 膜的理想 分离因子分别为 98(He/CO<sub>2</sub>),49(He/O<sub>2</sub>),64(He/N<sub>2</sub>), 79(He/CH<sub>4</sub>)和 91(He/SF<sub>6</sub>).随着热处理温度升高,粉体 的平均孔径逐渐增大(但仍在微孔范围),则比表面积降 低(表 1),孔隙率显著降低,导致气体渗透性能发生变 化.

| 表2イ | 「同烧成温度」 | 下所制 | Si0₂膜的 <sup>•</sup> | 气体渗透性能 |
|-----|---------|-----|---------------------|--------|
|-----|---------|-----|---------------------|--------|

| Table 2 Gas permeability of incroporous SiO <sub>2</sub> memorale calcined at various temperatures |                         |                                                                                                                       |      |        |       |       |        |        |  |  |  |
|----------------------------------------------------------------------------------------------------|-------------------------|-----------------------------------------------------------------------------------------------------------------------|------|--------|-------|-------|--------|--------|--|--|--|
| Calcination temperature of                                                                         | Temperature of membrane | Gas permeance of SiO <sub>2</sub> membrane $[\times 10^{-8} \text{ mol}/(\text{m}^2 \cdot \text{s} \cdot \text{Pa})]$ |      |        |       |       |        |        |  |  |  |
| SiO₂ membrane (°C)                                                                                 | module (°C)             | (MPa)                                                                                                                 | He   | $CO_2$ | $O_2$ | $N_2$ | $CH_4$ | $SF_6$ |  |  |  |
| 400                                                                                                | 200                     | 0.3                                                                                                                   | 10.8 | 0.72   | 1.13  | 1.93  | 2.55   | 1.04   |  |  |  |
| 600                                                                                                | 200                     | 0.3                                                                                                                   | 12.7 | 0.13   | 0.26  | 0.20  | 0.16   | 0.14   |  |  |  |
| 800                                                                                                | 200                     | 0.3                                                                                                                   | 7.29 | 0.27   | 1.0   | 1.34  | 1.42   | 0.54   |  |  |  |

| 表 3 400 ℃下烧成的 SiO₂膜(Si-400) 经水蒸气处理 8 h f | 后的气体渗透性能 |
|------------------------------------------|----------|
|------------------------------------------|----------|

Table 3 Gas permeability of Si-400 membrane after steam treatment for 8 h

| Table 5 Gas perineability of 51-400 memorale after steam treatment for 6 m |                                                                                                                          |        |       |       |        |        |                    |                                                     |                    |  |  |
|----------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|--------|-------|-------|--------|--------|--------------------|-----------------------------------------------------|--------------------|--|--|
| Steam treatment                                                            | nt Gas permeance of SiO <sub>2</sub> membrane $[\times 10^{-8} \text{ mol}/(\text{m}^2 \cdot \text{s} \cdot \text{Pa})]$ |        |       |       |        |        |                    | Permselectivity of SiO <sub>2</sub> membrane, $F_a$ |                    |  |  |
| pressure (kPa)                                                             | He                                                                                                                       | $CO_2$ | $O_2$ | $N_2$ | $CH_4$ | $SF_6$ | He/CO <sub>2</sub> | He/N <sub>2</sub>                                   | He/CH <sub>4</sub> |  |  |
| 8                                                                          | 11.7                                                                                                                     | 0.80   | 2.08  | 2.18  | 2.83   | 1.16   | 14.6               | 5.4                                                 | 4.1                |  |  |
| 15                                                                         | 27.9                                                                                                                     | 6.27   | 8.71  | 8.57  | 11.8   | 4.67   | 4.4                | 3.3                                                 | 2.4                |  |  |
| 30                                                                         | 37.0                                                                                                                     | 9.48   | 12.5  | 13.4  | 17.4   | 6.49   | 3.9                | 2.8                                                 | 2.1                |  |  |

#### 3.3 微孔 Si0₂膜在不同压力水蒸气条件下的稳定性

表3是Si-400膜经不同压力水蒸气处理后的干气体 渗透性能.可以看出,经8 kPa的水蒸气处理8 h 后, Si-400 膜对 He, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>和 SF<sub>6</sub>的渗透性能均略 有增大,但理想分离因子与未经水蒸气处理的膜相比基 本保持不变.随水蒸气压力提高,15 和 30 kPa 时 Si-400 膜的渗透性能显著增大,但值得注意的是,膜的理想分 离因子显著降低,基本与 Knudsen 扩散机理的分离系数 (3.3, He/CO<sub>2</sub>)相近.说明此时 Si-400 膜的微孔结构已被 破坏,对不同气体已不具有分子筛分效应.由于过渡层 γ-Al<sub>2</sub>O<sub>3</sub>结构(孔径约 3 nm)未被破坏,因此,此时 Si-400 膜表现出中孔γ-Al<sub>2</sub>O<sub>3</sub>膜的气体分离特征.

表 4 是 Si-600 和 Si-800 膜经不同压力水蒸气处理 后对干燥气体的渗透性能.由表可见,当水蒸气压力在 8~200 kPa 范围内变化时,Si-600 膜对 6 种气体的渗透 性能基本稳定,气体的理想分离因子虽略有降低,但变 化幅度不大.说明膜在低于 200 kPa 的水蒸气压力下是 稳定的. 当水蒸气压力达 500 kPa 时, Si-600 膜对 He 气的渗透性能显著降低,从 200 kPa 时的 13.1×10<sup>-8</sup> mol/(m<sup>2</sup>·s·Pa)降低到 8.74×10<sup>-8</sup> mol/(m<sup>2</sup>·s·Pa),对 CO<sub>2</sub>,O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>和 SF<sub>6</sub>的渗透性急剧增大. De Lange 等<sup>[11]</sup>和 Fotou 等<sup>[12]</sup>的研究也发现,SiO<sub>2</sub>膜在水蒸气处理过程中 会致密化,膜的比表面积减小,微孔孔径减小,从而导 致 H<sub>2</sub>渗透性减小,但由于 SiO<sub>2</sub>膜出现了微裂纹,导致 对 N<sub>2</sub>的渗透性增大.本研究中,经 500 kPa 水蒸气处理 后的 Si-600 膜的理想分离因子大大降低,甚至低于 Knudsen 扩散分离系数,说明此时 Si-600 膜的微孔结构 已被破坏.因此,此时的 Si-600 膜已不具有分子筛分性 能.另外,与 Si-400 膜相比, Si-600 膜的水蒸气稳定性 大大提高,稳定条件从 8 kPa 提高到 200 kPa.

对比 Si-800 膜和 Si-600 膜经不同压力水蒸气处理 后对干燥气体的渗透性能可以看出,当水蒸气压力在 8~200 kPa 范围变化时,Si-800 膜与 Si-600 膜的渗透性 能变化相似,即 Si-800 膜对 6 种气体的渗透性能变化不 大, 膜的理想分离因子也基本保持稳定. 只是由于膜烧 成温度提高导致 Si-800 膜对 He 的渗透性能低于 Si-600 膜, 而对 CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>和 SF<sub>6</sub>的渗透性能高于 Si-600 膜, 说明 Si-800 膜与 Si-600 膜有相似的水蒸气稳定条 件. 随水蒸气压力提高到 500 kPa, 2 种膜对 6 种气体的 渗透性能变化不同, 但 Si-800 膜的理想分离因子均有所 降低. 值得注意的是, Si-800 膜经 500 kPa 水蒸气处理 8 h 后, 虽然 He 气的渗透性能也有所降低, 但并不像 Si-600 膜出现对 CO<sub>2</sub>, O<sub>2</sub>和 N<sub>2</sub>等气体的渗透性能大幅度 增大的情况, 甚至略有降低. 这是因为在高温水蒸气条 件下,SiO<sub>2</sub> 膜会发生粘性烧结导致SiO<sub>2</sub> 膜致密化<sup>[15]</sup>,同时,Tsuru<sup>[13]</sup>认为经水蒸气处理后的SiO<sub>2</sub> 膜中硅氧烷 键会断裂而产生硅醇基团,通过可移动硅醇基团的重新 排列,使SiO<sub>2</sub>的网络结构致密化,使微孔孔径减小.另外,经500kPa水蒸气处理后,虽然Si-800膜的理想分 离因子有所降低,但膜仍然没有失去微孔结构,表现在 其He/CO<sub>2</sub>理想选择性仍然保持在11.4,高于Knudsen 分离系数(3.3).表明Si-800 膜比Si-600 膜具有更高的水 蒸气稳定性.

图 3 分别是 Si-600 和 Si-800 膜经不同压力水蒸气

| 表 4 | 600℃和800 | Cト烧成的 | Si0₂膜经水烝 | 气处理 8 | h 后的 <sup>。</sup> | 气体渗透性能 |
|-----|----------|-------|----------|-------|-------------------|--------|
|-----|----------|-------|----------|-------|-------------------|--------|

| Table 4         Gas permeabilities of Si-600 and Si-800 membranes after steam treatment for 8 h |                 |      |              |             |                           |                          |                 |                    |                   |                                |
|-------------------------------------------------------------------------------------------------|-----------------|------|--------------|-------------|---------------------------|--------------------------|-----------------|--------------------|-------------------|--------------------------------|
| Mamhrona                                                                                        | Steam treatment | Ga   | as permeance | of SiO2 men | nbrane [×10 <sup>-8</sup> | mol/(m <sup>2</sup> ·s·F | <b>P</b> a)]    | Permselecti        | vity of SiO2 m    | embrane, <i>F</i> <sub>a</sub> |
| Memorane                                                                                        | pressure (kPa)  | He   | $CO_2$       | $O_2$       | $N_2$                     | $CH_4$                   | SF <sub>6</sub> | He/CO <sub>2</sub> | He/N <sub>2</sub> | He/CH <sub>4</sub>             |
|                                                                                                 | 8               | 12.0 | 0.099        | 0.28        | 0.34                      | 0.44                     | 0.089           | 121.2              | 35.3              | 27.3                           |
|                                                                                                 | 15              | 12.6 | 0.10         | 0.29        | 0.34                      | 0.45                     | 0.097           | 126.0              | 37.1              | 28.0                           |
|                                                                                                 | 30              | 12.7 | 0.10         | 0.30        | 0.37                      | 0.47                     | 0.10            | 127.0              | 34.3              | 27.0                           |
| S: 600                                                                                          | 40              | 12.6 | 0.11         | 0.30        | 0.38                      | 0.47                     | 0.11            | 114.5              | 33.2              | 26.8                           |
| 51-000                                                                                          | 60              | 12.7 | 0.11         | 0.31        | 0.41                      | 0.48                     | 0.11            | 115.5              | 31.0              | 26.5                           |
|                                                                                                 | 100             | 12.9 | 0.12         | 0.31        | 0.42                      | 0.50                     | 0.11            | 107.5              | 30.7              | 25.8                           |
|                                                                                                 | 200             | 13.1 | 0.12         | 0.34        | 0.43                      | 0.51                     | 0.12            | 109.2              | 30.5              | 25.7                           |
|                                                                                                 | 500             | 8.74 | 6.64         | 9.13        | 8.95                      | 10.3                     | 3.25            | 1.3                | 0.98              | 0.85                           |
|                                                                                                 | 8               | 7.19 | 0.31         | 1.31        | 1.36                      | 1.47                     | 0.62            | 23.2               | 5.3               | 4.9                            |
|                                                                                                 | 15              | 7.26 | 0.24         | 1.05        | 1.32                      | 1.46                     | 0.57            | 30.3               | 5.5               | 5.0                            |
|                                                                                                 | 30              | 7.42 | 0.26         | 1.10        | 1.34                      | 1.50                     | 0.57            | 28.5               | 5.5               | 5.0                            |
| S: 800                                                                                          | 40              | 7.48 | 0.26         | 1.20        | 1.37                      | 1.50                     | 0.58            | 28.8               | 5.5               | 5.0                            |
| 51-800                                                                                          | 60              | 7.40 | 0.27         | 1.12        | 1.37                      | 1.50                     | 0.59            | 27.4               | 5.4               | 4.9                            |
|                                                                                                 | 100             | 6.79 | 0.19         | 1.03        | 1.23                      | 1.38                     | 0.41            | 35.7               | 5.5               | 4.9                            |
|                                                                                                 | 200             | 5.88 | 0.23         | 1.18        | 1.06                      | 1.11                     | 0.46            | 25.6               | 5.5               | 5.3                            |
|                                                                                                 | 500             | 2.27 | 0.20         | 0.67        | 0.98                      | 1.41                     | 0.48            | 11.4               | 2.3               | 1.6                            |





处理前后对He, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>和SF<sub>6</sub>气体的渗透性能. 从图可以非常直观地看出,随SiO<sub>2</sub>膜烧成温度提高,膜 的水蒸气稳定性能也相应提高.这是由于SiO<sub>2</sub>膜的微 观结构由—Si—O—Si—结构和端羟基(—OH)组成, SiO<sub>2</sub>膜和H<sub>2</sub>O的作用主要是通过SiO<sub>2</sub>膜中的端羟基与 水发生反应,端羟基数决定膜水热稳定性的高低.由于 热处理温度越高,SiO<sub>2</sub>膜内的端羟基数越少,从而其水 热稳定性也越高<sup>[10]</sup>. 考虑到高温水蒸气也可能对γ-Al<sub>2</sub>O<sub>3</sub> 膜的完整性产 生影响,考察了γ-Al<sub>2</sub>O<sub>3</sub> 膜经水蒸气处理前后的气体渗透 性能,结果如表 5 所示.由表可见,γ-Al<sub>2</sub>O<sub>3</sub> 膜经 8 和 500 kPa 水蒸气处理后,对 He, CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub>和 SF<sub>6</sub>的渗 透通量与处理前相比变化不大.因此,可以认为 SiO<sub>2</sub> 膜 经水蒸气处理后气体渗透性能和膜理想分离因子的变 化是由 SiO<sub>2</sub> 膜材料的稳定性决定的.

#### 165

| Table 5 Gas permeability of $\gamma$ -Al <sub>2</sub> O <sub>3</sub> membrane before and after steam treatment for 8 h |                 |      |               |                                        |                                                               |        |        |                    |                   |                    |
|------------------------------------------------------------------------------------------------------------------------|-----------------|------|---------------|----------------------------------------|---------------------------------------------------------------|--------|--------|--------------------|-------------------|--------------------|
|                                                                                                                        | Steam treatment | C    | Bas permeance | of y-Al <sub>2</sub> O <sub>3</sub> me | Permselectivity of γ-Al <sub>2</sub> O <sub>3</sub> membrane, |        |        |                    |                   |                    |
|                                                                                                                        | pressure (kPa)  | He   | $CO_2$        | $O_2$                                  | $N_2$                                                         | $CH_4$ | $SF_6$ | He/CO <sub>2</sub> | He/N <sub>2</sub> | He/CH <sub>4</sub> |
|                                                                                                                        | Before          | 62.8 | 18.8          | 22.9                                   | 25.0                                                          | 32.6   | 12.4   | 3.3                | 2.5               | 1.9                |
|                                                                                                                        | 8               | 62.1 | 18.2          | 22.9                                   | 24.0                                                          | 31.3   | 12.2   | 3.4                | 2.6               | 2.0                |
|                                                                                                                        | 500             | 63.3 | 19.2          | 23.9                                   | 25.9                                                          | 33.7   | 12.9   | 3.3                | 2.4               | 1.9                |



(a) Surface before treatment (b) Surface after treatment (c) Cross section before treatment (d)

(d) Cross section after treatment

图 4 Si-600 膜经水蒸气处理前后表面和断面的 SEM 照片 Fig.4 SEM images of surface and cross section of Si-600 membrane before and after steam treatment

#### 3.4 微孔 Si0₂膜表面和断面的微观形貌

图 4 是在 600 ℃下烧成的 SiO<sub>2</sub>膜经水蒸气处理前后 表面和断面的 SEM 照片.可以看出, Si-600 膜在水蒸气 处理前表面完整、无缺陷.从图 4(c)可以明显看出 γ-Al<sub>2</sub>O<sub>3</sub>/SiO<sub>2</sub>的两层结构,顶层 SiO<sub>2</sub>膜厚度约为 200 nm. 经 500 kPa 水蒸气处理后, SiO<sub>2</sub>膜层依然存在[图 4(d)], 厚度与处理前变化不大,但其表面出现明显的裂纹,这 是 Si-600 膜经 500 kPa 水蒸气处理后失去分子筛分性能 的主要原因.

## 4 结论

以正硅酸乙酯为前驱体,通过聚合溶胶路线制备出 稳定的 SiO<sub>2</sub>溶胶,在平均孔径为 3 nm 的γ-Al<sub>2</sub>O<sub>3</sub> 中孔膜 上制备出 SiO<sub>2</sub> 微孔膜.重点考察了 3 个烧成温度(400, 600 和 800 ℃)下制备的 SiO<sub>2</sub>微孔膜经水蒸气处理后的稳 定性能,由研究结果得到以下结论.

(1)在 400~800℃的烧成温度范围内制备出的 SiO<sub>2</sub> 膜在 200℃及 0.3 MPa 条件下对 He 的渗透通量为 (7.29~12.7)×10<sup>-8</sup> mol/(m<sup>2</sup>·s·Pa),600℃烧成的膜的理想分 离因子分别达到 98(He/CO<sub>2</sub>),49(He/O<sub>2</sub>),64(He/N<sub>2</sub>), 79(He/CH<sub>4</sub>)和 91(He/SF<sub>6</sub>),说明制备的 SiO<sub>2</sub> 膜具有分子 筛分效应.

(2)微孔 SiO<sub>2</sub> 膜在水蒸气条件下的稳定性能取决于 膜的烧成温度,400,600 和 800℃烧成的膜的水蒸气稳 定压力分别为 8,200 和 200 kPa.

#### 参考文献:

- Metz B, Davidson O, De Coninck H, et al. IPCC Special Report on Carbon Dioxide Capture and Storage [M]. United Kingdom (Cambridge): Cambridge University Press, 2005. 105–178.
- [2] Nijmeijer A. Hydrogen-selective Silica Membranes for Use in

Membrane Stream Reforming [D]. Netherlands (Enschede): University of Twente, 1999. 54, 71–72.

- [3] Sekulic J, Luiten M W J, ten Elshof J E, et al. Microporous Silica and Doped Silica Membrane for Alcohol Dehydration by Pervaporation [J]. Desalination, 2002, 148(1/3): 19–23.
- [4] Barboiu C, Sala B, Bec S, et al. Structural and Mechanical Characterizations of Microporous Silica–Boron Membranes for Gas Separation [J]. J. Membr. Sci., 2009, 326(2): 514–525.
- [5] Uhlmann D, Liu S M, Ladewig B P, et al. Cobalt-doped Silica Membranes for Gas Separation [J]. J. Membr. Sci., 2009, 326(2): 316–321.
- [6] Boffa V, Blank D H A, ten Elshof J E. Hydrothermal Stability of Microporous Silica and Niobia–Silica Membranes [J]. J. Membr. Sci., 2008, 319(1/2): 256–263.
- [7] De Vos R M, Maier W F, Verweij H. Hydrophobic Silica Membranes for Gas Separation [J]. J. Membr. Sci., 1999, 158(1/2): 277–288.
- [8] Kanellopoulos N K. Recent Advances in Gas Separation by Microporous Ceramic Membranes [M]. Amsterdam: Elsevier Press, 2000. 337.
- [9] Mallada R, Menéndez M. Inorganic Membranes Synthesis, Characterization and Application [M]. Amsterdam: Elsevier Press, 2008. 217–245.
- [10] De Vos R M. High-selectivity, High-flux Silica Membranes for Gas Separation, Synthesis, Transport and Stability [D]. Netherlands (Enschede): University of Twente, 1998. 34.
- [11] De Lange R S A, Keizer K, Burggraaf A J. Aging and Stability of Microporous Sol–Gel-modified Ceramic Membranes [J]. Ind. Eng. Chem. Res., 1995, 34(11): 3838–3847.
- [12] Fotou G P, Lin Y S, Pratsinis S E. Hydrothermal Stability of Pure and Modified Microporous Silica Membranes [J]. J. Mater. Sci., 1995, 30(11): 2803–2808.
- [13] Tsuru T. Nano/Subnano-tuning of Porous Ceramic Membranes for Molecular Separation [J]. J. Sol-Gel Sci. Technol., 2008, 46(3): 349–361.
- [14] Gallaher G R, Liu P K T. Characterization of Ceramic Membranes: I. Thermal and Hydrothermal Stabilities of Commercial 40 Å Membranes [J]. J. Membr. Sci., 1994, 92(1): 29–44.
- [15] Imai H, Morimoto H, Tominaga A, et al. Structural Changes in

Sol–Gel Derived SiO<sub>2</sub> and TiO<sub>2</sub> Films by Exposure to Water Vapor [J]. J. Sol–Gel Sci. Technol., 1997, 10(1): 45–54.

[16] 漆虹,邢卫红,范益群,γ-Al<sub>2</sub>O<sub>3</sub>中孔陶瓷膜的制备及表征 [J]. 化 工学报,2009,60(10): 2628-2632.

#### Hydrothermal Stability of Microporous SiO<sub>2</sub> Membranes

QI Hong, HAN Jing, JIANG Xiao-luo, TAO Zhen, XING Wei-hong, FAN Yi-qun

(State Key Laboratory of Materials-Oriented Chemical Engineering, Membrane Science and Technology Research Center, Nanjing University of Technology, Nanjing, Jiangsu 210009, China)

Abstract: Preparation and hydrothermal stability of microporous silica membrane were studied. A stable SiO<sub>2</sub> polymeric sol was successfully synthesized with tetraethylorthosilicate as precursor through polymeric sol–gel route.  $\alpha$ -Al<sub>2</sub>O<sub>3</sub> supported defect-free mesoporous  $\gamma$ -Al<sub>2</sub>O<sub>3</sub> disk membrane with average pore size of about 3 nm was fabricated via dip coating and subsequently calcined at 600 °C. The effect of calcination temperature on the properties of SiO<sub>2</sub> powder and gas permeabilities of supported SiO<sub>2</sub> membranes, especially with regard to the hydrothermal stability of SiO<sub>2</sub> microporous membranes, was studied in detail. The results show that He permeability of SiO<sub>2</sub> membranes calcined at 400~800 °C was (7.29~12.7)×10<sup>-8</sup> mol/(m<sup>2</sup>·s·Pa) at 200 °C and 0.3 MPa. The permselectivity of He with respect to CO<sub>2</sub>, O<sub>2</sub>, N<sub>2</sub>, CH<sub>4</sub> and SF<sub>6</sub> was 98, 49, 64, 79 and 91, respectively, indicating a molecular sieving effect. The calcination temperature played a key role in determination of the hydrothermal stability of microporous silica membrane, which was confirmed experimentally. The performance of SiO<sub>2</sub> membrane calcined at 400, 600 and 800 °C deteriorated under the H<sub>2</sub>O pressures of 8, 200 and 200 kPa, respectively.

Key words: microporous ceramic membrane; SiO<sub>2</sub> membrane; hydrothermal stability; gas separation

<sup>[17]</sup> Leboda R, Mendyk E, Gierak A, et al. Hydrothermal Modification of Silica Gels (Xerogels): 1. Effect of Treatment Temperature on Their Porous Structure [J]. Colloids Surf. A: Physicochem. Eng. Aspects, 1995, 105(2/3): 181–189.